(16x^6-12x^4+4x^2)/4x^2

Simple and best practice solution for (16x^6-12x^4+4x^2)/4x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (16x^6-12x^4+4x^2)/4x^2 equation:


x in (-oo:+oo)

x^2*((16*x^6-(12*x^4)+4*x^2)/4) = 0

x^2*((16*x^6-12*x^4+4*x^2)/4) = 0

(x^2*(16*x^6-12*x^4+4*x^2))/4 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

(16*x^6-(12*x^4)+4*x^2)/4 = 0

(16*x^6-12*x^4+4*x^2)/4 = 0

(16*x^6-(12*x^4)+4*x^2)/4 = 0 // * 4

16*x^6-(12*x^4)+4*x^2 = 0

16*x^6-12*x^4+4*x^2 = 0

t_1 = x^2

16*t_1^3-12*t_1^2+4*t_1^1 = 0

16*t_1^3-12*t_1^2+4*t_1 = 0

4*t_1*(4*t_1^2-3*t_1+1) = 0

4*t_1^2-3*t_1+1 = 0

DELTA = (-3)^2-(1*4*4)

DELTA = -7

DELTA < 0

4*t_1 = 0

4*t_1 = 0 // : 4

t_1 = 0

t_1 = 0

x^2+0 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x^2*((16*x^6-(12*x^4)+4*x^2)/4) = 0 <=> x^2 = 0 or x^2*((16*x^6-(12*x^4)+4*x^2)/4) = 0 <=> (16*x^6-(12*x^4)+4*x^2)/4 = 0

x in { 0, 0 }

See similar equations:

| 5n+4=29whatisn | | 5x^2+22x=-15 | | -x^3+8=0 | | x^2+24x=-119 | | 8-x^3=0 | | 4x-2/x=-7 | | 750.00-50.00h= | | -4m-1=1+4m | | 750-50= | | 750.00-50.00h-185.00+35.00h= | | -185.00+35.00h= | | 6y-2(y+4)=16 | | 750-50h= | | 3y(-y+2)=(y-2)(y+2)-(2y+3)(2y-1) | | 1.62y=3.16(y-8.62) | | 2+48x^2+32x^4=y | | (2x+300)/3+39=(5x-150)/4+(8x+120)/4 | | 4x^2+31x+22=0 | | (4x^2+31x+22)/(x+7) | | 9a^13b^20=0 | | 1/2(n-6)=19 | | 8x-12=-4x+12 | | log(x)+log(8)=2 | | 63=0.5(2x)(2x+4) | | y=pi/(7x^2-8) | | 8x-12=4x+12 | | 1/3x=92 | | x+9+x+3+x^2-3x+3x-3=57 | | (x+3)(2x-2)=(2x+3)(x+1) | | 18-2x=x-25 | | y=(2x-5)(5x^3-x^2+1) | | ln(x+3)-1=0 |

Equations solver categories